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Mechanisms for facilitated target location and the optimal number of molecules
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We investigate the numbeéX of molecules needed to perform independent diffusion in order to achieve
bonding of a single molecule to a specific site in titge For a certain range of values @, an increase from
N to kN molecules k> 1) results in the decrease of search time fitgrto ty/k. In this regime, increasing the
number of molecules is an effective way of speeding up the search process. HoweveX whign(optimal
number ofN) the reduction of time fron, to ty/k can be achieved only by an exponentially large increase in
the number of moleculggrom N to N exp(ck) for somec>0].
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I. INTRODUCTION in the fastest possible way. As we will show, there is an
optimal numbeN, for performing the task of target location.
Diffusion is one of the prime means of protein transportTo be specific, we take a single molecule in a volume
on the micrometer scale of a cell in the case of bacfafiar ~ =L* and a target of linear siza. We estimate the time
a nucleus in the case of eukaryotic c¢23$. One of the most needed to locate the target by various aforementioned
important processes in the cell is the activation or repressiofechanisms. Next we increase the nunfbef molecules. If
of genes. In order to activate or repress a gene, a specifld is small and the molecules are independent the time
protein must find a short sequence of nucleotides on theeeded to locate the target decreases/Ws However, we
chain of DNA related to the gene and tightly bind to it. The Will show that whenN>N,, the decrease of time will be
protein must first find its target in the volume by diffusional l09arithmic inN and not algebraic. Therefore we chij the
motion; so, in principle, the rate of this reaction is limited by Ptimal number of molecules for locating the target. Of
the time needed by diffusion to bring the protein to its targeCOUrse e assume that the molecules enter the volume where
[3]. However, it was recognized many years dge] that the target is located through the bounding surface and are not
the free diffusion in three-dimension@D) space is too slow prevsven;tjm thf \{o!un";ﬁ tzetthre the star.t of t?_e SF?rcrt]hprzqess.
for many biological processes. A simple estimg shows Iogic:I poroncoescs;msinge alsiyr;)lijcr:gl ebricl)ir?;rrmgl p?;thvsayloih-
that for a single specific protein, it takes a few days to find

o e e 7S J/olves plenty of stepgreactiong and usually the time scale
small specific binding site in DNA by free diffusion in a cell for one step must be well correlated with the time scales for

or a nucleus—the time that cannot be reconciled with experiz the other steps in the biochemical pathway. Nonetheless
mental facts. There are a number of specific mechanisms thgis optimal numbeN, calculated in this paper can be used
can speed up the process of target locafidrsuch as reduc- a5 an estimate of the upper limit for the number of molecules
tion of dimensionality in a search process from 3D to[2D i the process of location of a single target by diffusion.

or 1D, sliding with intersegment transfer procesigs1Q| or The paper is organized as follows. In Sec. Il we calculate
combination of 3D and 1D diffusion procesde§. 1D dif- N, for the free diffusion process in a 3D system. In Sec. |l
fusion on DNA has been observéd vitro [11,12], but its  we perform the same calculation for a 2D system. In Sec. IV
relevance to the facilitated target locationvivo has been e discuss 1D diffusion on a line combined with the inter-
questioned6,13. In general it is not known which strategy segment transfer or 3D diffusion. Conclusions are drawn in

proteins is used by in order to locate the targetivo, al-  Sec. V.
though it is an established fact that its mode of transport is
diffusion. II. 3D DIFFUSION

One of the problems that has not been addressed so far in

connection with facilitated target location is the number of We assume thall molecules enter a spherical region of

molecules that are needed to locate the target in the fasteliear sizel at the same time through a surface bounding the

way for a given size of the target and that of the volumeregion and they search for the target of sizgia diffusion

where the target is located. In a living cell, there is usuallycharacterized by the diffusion coefficieBt We will con-

only one DNA molecule and tens or hundreds of copies ofider the timet, when one of the molecules reaches the

the same specific protein. One purpose of the paper is ttarget.

estimate the number of molecules needed to locate the target The molecules perform a reflected Brownian motion in-
side the sphere. The motion can be divided into two periods.
In the first period, wherte[0,s], a molecule stays within

*Email address: burdzy@math.washington.edu distancel <L from its point of entry. In the second period,
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for te[s,»), the molecule’s distribution is spread over the the molecules reaches the binding site by tipevith prob-

whole spherical region of linear size
After time s, the probability distribution for a single mol-

ecule within the spherical region is roughly uniform. The
hitting time of the binding site has an approximately expo-

nential distribution for times greater than Since the mini-

mum of N independent exponential random variables is an

exponential random variable with an expectatidntimes
smaller, increasing the number of moleculemes results
in a decrease of the time needed to reach the binding site
one of them by the same factor kf

We will now estimate the critical tims. The probability
that a molecule move&t least distancelL away from its
starting point in timety is equal to

1

2
» r
_ 2
fL (ZwtoD)e”zeX'{ 2Dt0)47-rr dr.

The critical times is given by the value of, for which the
last expression is equal tg. We find numerically that
L/\toD~1.54. Hences~L?%/(1.5D).

Now we will consider times less thas For such times,

oY)

ability py~1/2. We must hav&p,~py. Hence,

pn 1 1L? vaL L?
~—=——=_— ex . (4)
P1 2p1 2@ zt,D 2Dty

We conclude that th&-fold increase in the number of mol-
eculesN results only in a logarithmi¢in k) decrease of the
d\%’tting timet,. The critical number of moleculdsd, beyond

hich the increase dfl is not efficient is obtained from Eq.
(4) by substituting the inverse of the probability from Eq.
(1), with ty=s in place of the expression
(V2L/\mt,D)exp(?/\/2Dty). Because this probability is
1 we finally find

=2 5

From this estimate one can compute the minimal time
needed to find the target in the volume. It follows from the
work of Smoluchowski and co-workef8,13] and Eq.(5)

the distribution of a single molecule is concentrated near théhat

surface bounding the region. The probability that a molecule

moves(at least a distance. away from its starting point in
time ty<s is

o 1 r2
o 2
fL —MOD) exp< 2Dt0)4m dr
:_(E)l/zex%_y_ij +J»m (E>1/2
7T 2 L/\[toD L/ (D \ T
2
y
Xex;{—?)dy
(2)1/2 4 L2 ) L \/tO_D<2)l/2
<|—| expg-— + —
T 2toD/ \}t,D L \=7
L2
xex;{—m). (2)

Fort,<s, we havel/\/t,D>1.54 so the first term in the last
line is dominating.

If a molecule reaches a binding sitein a timet, less
thans, then its trajectory is ballistic for the timg, i.e., it

. L® La
° NeaD D
I1l. 2D DIFFUSION

It has been conjectured jd] that the search for a binding
site may be speeded up by a number of possible mechanisms,
mostly dealing with reduction of dimensionality. The diffu-
sion process in a 3D-2D reduction of dimensionality model
involves two steps. First a molecule finds a surface on which
a target is located and next it finds the target by sliding on
the surfacd3,6]. In this section we recalculate the quantities
introduced in the previous section assuming that the mol-
ecules move on a two-dimensional flat surface.

We now consider a circular region of linear sizeand a
binding site of linear size in the middle of the circle. We
suppose that the molecules perform a reflected Brownian
motion on the two-dimensional surface with the diffusion
constantD.

As in the three-dimensional model, after the critical time
s, the probability distribution for a single molecule within the
circular region is roughly uniform. The hitting time of the

follows a straight line. The probability that a straight line in binding site has an approximately exponential distribution
a random direction in 3D space hits a binding site of linearfor times greater thas. Increasing the number of molecules

dimensionsa at a distance. is equal toa?/L2. Hence, the

k times results in a decrease of the time needed to reach the

probability p; that a single molecule hits the binding site binding site by one of them by the same factorkof

after timet, is approximately equal tpsee Eq.(2) and the
comment following i

a? vaL ﬁ{ L2 ) @
=— expg — :
P D 2Dt,

We havep;<1 forty<s anda<<L. We are interested in the

The probability that a molecule movéat least distance
L away from its starting point in timg, is equal to
® r2

fL exr{—ZDto)Zwrdr=exr<—

The times is given by the value of, for which Eg.(6) is

LZ
2Dt

1
27Tt0D

). (6)

value ofN, the number of molecules, such that at least one oequal to3, i.e.,
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Recall that if a molecule reaches a binding &it@ a time
to less thars, then its trajectory is ballistic for timgy, i.e., it
follows a straight line. The probability that a straight line in
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IV. COMBINED DIFFUSION PROCESSES
A. 1D diffusion with intersegment transfer

We will consider two possible models for a DNA
molecule—"self-avoding random walk'(SARW) [15] and
“true self-avoding random walk” (TSARW) [16,17).
SARW can be obtained from the random walk by rejecting

a random direction in 2D space hits a binding site of linearg|| trajectories that cross it at any point. In contrast to that

dimensionsa at a distancd. is equal toa/L. Hence, the

model, TSARW can be represented as an ordinary random

probability p; that a single molecule hits the binding site walk whose trajectories pass very close to points visited ear-

afterty seconds is approximately equal to

_a
pl—Eex

We havep,<1 forty<s anda<<L. We would like to findN

L2
2Dt0)'

8

such that at least one of the molecules reaches the binding

site by timety, with probability py~3. Such anN must
satisfyNp,;~py. Hence,

1L

23

Just as in the 3D case, tlefold increase in the number of
moleculesN results only in a logarithmié¢in k) decrease of
the hitting timety. The critical number of moleculebly
beyond which the increase of is not efficient is obtained
from Eq. (13) by substituting the inverse of the probability
from Eq.(10), i.e.,

L2

b1
2Dty)”

~—=_— 9
P1  2p: ©

N

L2
2Ds

1L
NOZE an

(10

L
g.

lier by the same path instead of revisiting such points.
First we will examine the TSARW model together with

the one-dimensional diffusion and intersegment transfer. In

this model a molecule performs a one-dimensional walk
along a DNA chain and when two parts of the chain are close
to each other, the molecule can jump from one part to an-
other part of the DNA(intersegment transfef7].
According to this model, the binding site lies on a Gauss-
ian polymer chain of length, . In our search model, first the
molecule has to find the polymer chain that will be consid-
ered a 3D target with linear size~a+/L,/a=\aL,. Then,
the molecule will slide along the polymer chain to find the
binding site of linear size.

The percolation or chemical exponent of the random walk
path in 3D, i.e., of a TSARW cluster, is about 083,19.
Let sbe the time needed for random walk on TSARW cluster
to reach the stationary distribution. Foress thans, if a
molecule goes from a point on the TSARW cluster to an-
other point on the cluster whose distance is comparable to
the cluster size, the path will have to have a “ballistic char-
acter,” i.e., it will be the shortest path between the two
points within the cluster. This is supported, for example, by
the known estimates of the transition probabilities on fractal
setg[20]. They have a form similar to the Gaussian transition
probabilities in that, the probabilities of very fast transitions

We see that in the 2D model, the optimal number of mol-are exponentially sma(l20]. We conclude that the number
ecules is much lower than in the 3D model. In general for 0f ballistic paths on the TSARW cluster is of order

given dimensionalityd of the system ¢=1),

No=(L/a)4"%. (11

(L,/a)t~ %8 and so the probabilitp; that a random ballistic
path hits the target binding site is of ordér,(a) %2 This
implies that the critical number of molecules iNg
=(L,/a)%? although this represents only a portion of the
search process on the TSARW cluster, because first of all a

We will now extract the essence of calculations in Secs. linglecule has to find the cluster. Therefore, the last estimate

and Il (3D and 2D casgsso that we can apply similar ar-

has to be combined with the critical number of molecules

guments in models for which explicit calculations are impos-needed to find the TSARW cluster in the cell. According to

sible.
First, we find the critical times in which the molecule

Sec. II, the critical number isL{b)?, so the modified esti-
mate ofNg is

distribution in the volume reaches its stationary state. For

times t less thans, the molecule may reach the specific

bounding site in tim& by following a ballistic path. Lep,

be the probability that a single molecule following a ballistic
path in a random direction will reach the target at the end of

the path. Then the critical number of molecuNg is equal
to 1/p,.

The minimal timet, required to find the target in the 2D
case is obtainefb,14] as in the 3D case,

. L?In(l/a) Laln(L/a)
""" ND = D

No=(L/b)?(L,/a)%2 (12)

A typical size of a TSARW of length ; is b~+alL,, but
in a typical cell one findé&~L. Therefore the factorl(/b)?
is at most of the order of ten.

B. Combined 3D-1D diffusion

Next we consider the SARW model. In this model, once
the SARW cluster is reached, a molecule is performing a 1D
diffusion along a line of length.; with the diffusion coeffi-
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cient D,. After a time r;~13/D,, the molecule detaches and for this particular casg~0.004s. For the combined
from the SARW cluster and performs a 3D diffusion until it 1D, diffusion and intersegment transfétq. (12)] we get
reaches the SARW cluster again and continues its motion

according to the 1D random walk. The process of inter-
changing 1D and 3D diffusion continues until the binding

Ny~ 600. (16)

Finally for the combined 1D-3D search process, we get from

site is found. Eq. (13

The critical number of molecules is the product of factors
corresponding to 1D and 3D diffusion processes. The 1D No~ 5000. (17)
factor is trivially 1, in view of Eq.(11).

The coiling of DNA molecule on the length scalelgfis One can also estimate the volume occupied\Ngymol-

negligible, so we will assume that a piece of this length carecules in the nucleus. A typical linear size of a protein is of
be treated as having a linear shape. Then the 3D search tise order of 100 A. Thus only in the case of H44) the
equivalent to the 2D search and we obtain, in view of Eqvolume fraction occupied by the molecules is considerable,

(10), i.e., of the order of 20%. In all other casdg molecules
occupies a tiny fraction of the volume, i.e., 0.004% or less.
N :E (13) The number of specific proteins is usually small, i.e., of
a the order of 10 or 100, thus it is at least a few orders of

magnitude smaller thaN, for 3D or 2D diffusion or com-
V. ESTIMATES AND CONCLUSIONS bined 1D-3D process and few times smaller tiNgnfor the
1D diffusion with intersegment transfer. We conclude that
Let us estimateN, for all our models assuming typical the number of specific proteins used to activate or repress the

parameter values taken from a biological system. One has igenes is well below the theoretical estimate of the optimal
note that in order to apply our models we need a clear-cutumber for the search process.
case in which molecules enter the volume via the bounding Finally we would like to note that as far as the search time
surface and are not present in the volume before the start ¢ concerned the 2D diffusion search process is the most
the search process. Here we consider the eucaryotic cell witsffective[6]. For a single molecule performing 1D diffusion
DNA contained in the nucleus and specific proteins in thewith intersegment transfer the best estimate of the search
cytoplasm. The protein must physically move from the cyto-time is
plasm into the nucleus of the cell and find its binding site in
order to activate a given gene. It may be present inside the t~L4l1/Dy,
cytoplasm in the inactive form and the external signal may . : . .
activate it. For example the transcription factor may be reWherel, is the typical d|stan(:2e covered between interseg-
leased from the tight complex with other protein that other-Tent transfers. Fob;~0.1xm%s [13,21 andl;~0.2um
wise holds it in the cytoplasm preventing it from entering the®"€ finds
nucleus. A typical size of the nucleuslis-5 um, the size of t~2x10°s
the DNA (one chromosomeis L;~10° um. A typical dif-
fusion coefficient for a small proteiike GFP) diffusing in  whereas we get for the 2D diffusid6] (see also Sec.)|
the nucleus iD;~10um?/s [2]. The size of the target is
roughly a~10"2 um (three or four base pairsA typical t~20s,

size b occupied by a single chromosome is of the order of. . . L
0.29. and a typical distancé, covered by 1D diffusion i.e., four orders of magnitude decrease in the search time in
along a DNA chain(measuredin vitro) [11,13 is I, comparison to the 1D diffusion with intersegment transfer.

~0.2um For the combined 1D-3D diffusion process we would get a

Assuming that we locate the target by free diffusion in thesimilar estimate of the search time as for the 1D diffusion
volume[3D diffusion, Eq.(5)], we find with intersegment transfer.
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