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Mechanisms for facilitated target location and the optimal number of molecules
in the diffusion search process
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We investigate the numberN of molecules needed to perform independent diffusion in order to achieve
bonding of a single molecule to a specific site in timet0 . For a certain range of values oft0 , an increase from
N to kN molecules (k.1) results in the decrease of search time fromt0 to t0 /k. In this regime, increasing the
number of molecules is an effective way of speeding up the search process. However whenN>N0 ~optimal
number ofN! the reduction of time fromt0 to t0 /k can be achieved only by an exponentially large increase in
the number of molecules@from N to N exp(ck) for somec.0#.
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I. INTRODUCTION

Diffusion is one of the prime means of protein transp
on the micrometer scale of a cell in the case of bacteria@1# or
a nucleus in the case of eukaryotic cells@2#. One of the most
important processes in the cell is the activation or repres
of genes. In order to activate or repress a gene, a spe
protein must find a short sequence of nucleotides on
chain of DNA related to the gene and tightly bind to it. Th
protein must first find its target in the volume by diffusion
motion; so, in principle, the rate of this reaction is limited
the time needed by diffusion to bring the protein to its tar
@3#. However, it was recognized many years ago@4,5# that
the free diffusion in three-dimensional~3D! space is too slow
for many biological processes. A simple estimate@6# shows
that for a single specific protein, it takes a few days to fin
small specific binding site in DNA by free diffusion in a ce
or a nucleus—the time that cannot be reconciled with exp
mental facts. There are a number of specific mechanisms
can speed up the process of target location@7# such as reduc-
tion of dimensionality in a search process from 3D to 2D@4#
or 1D, sliding with intersegment transfer processes@8–10# or
combination of 3D and 1D diffusion processes@7#. 1D dif-
fusion on DNA has been observedin vitro @11,12#, but its
relevance to the facilitated target locationin vivo has been
questioned@6,13#. In general it is not known which strateg
proteins is used by in order to locate the targetin vivo, al-
though it is an established fact that its mode of transpor
diffusion.

One of the problems that has not been addressed so f
connection with facilitated target location is the number
molecules that are needed to locate the target in the fa
way for a given size of the target and that of the volum
where the target is located. In a living cell, there is usua
only one DNA molecule and tens or hundreds of copies
the same specific protein. One purpose of the paper i
estimate the number of molecules needed to locate the ta
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in the fastest possible way. As we will show, there is
optimal numberN0 for performing the task of target location
To be specific, we take a single molecule in a volumeV
5L3 and a target of linear sizea. We estimate the timet
needed to locate the target by various aforementio
mechanisms. Next we increase the numberN of molecules. If
N is small and the molecules are independent the t
needed to locate the target decreases ast/N. However, we
will show that whenN.N0 , the decrease of time will be
logarithmic inN and not algebraic. Therefore we callN0 the
optimal number of molecules for locating the target.
course we assume that the molecules enter the volume w
the target is located through the bounding surface and are
present in the volume before the start of the search proc

We do not claim that this number is optimal for the bi
logical processes since a typical biochemical pathway
volves plenty of steps~reactions! and usually the time scale
for one step must be well correlated with the time scales
all the other steps in the biochemical pathway. Nonethe
the optimal numberN0 calculated in this paper can be use
as an estimate of the upper limit for the number of molecu
in the process of location of a single target by diffusion.

The paper is organized as follows. In Sec. II we calcul
N0 for the free diffusion process in a 3D system. In Sec.
we perform the same calculation for a 2D system. In Sec.
we discuss 1D diffusion on a line combined with the inte
segment transfer or 3D diffusion. Conclusions are drawn
Sec. V.

II. 3D DIFFUSION

We assume thatN molecules enter a spherical region
linear sizeL at the same time through a surface bounding
region and they search for the target of sizea via diffusion
characterized by the diffusion coefficientD. We will con-
sider the timet0 when one of the molecules reaches t
target.

The molecules perform a reflected Brownian motion
side the sphere. The motion can be divided into two perio
In the first period, whentP@0,s#, a molecule stays within
distancel !L from its point of entry. In the second period
©2001 The American Physical Society14-1
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for tP@s,`), the molecule’s distribution is spread over th
whole spherical region of linear sizeL.

After time s, the probability distribution for a single mol
ecule within the spherical region is roughly uniform. Th
hitting time of the binding site has an approximately exp
nential distribution for times greater thans. Since the mini-
mum of N independent exponential random variables is
exponential random variable with an expectationN times
smaller, increasing the number of moleculesk times results
in a decrease of the time needed to reach the binding sit
one of them by the same factor ofk.

We will now estimate the critical times. The probability
that a molecule moves~at least! distanceL away from its
starting point in timet0 is equal to

E
L

` 1

~2pt0D !3/2expS 2
r 2

2Dt0
D4pr 2dr. ~1!

The critical times is given by the value oft0 for which the
last expression is equal to12. We find numerically that
L/At0D'1.54. Hence,s'L2/(1.54D).

Now we will consider times less thans. For such times,
the distribution of a single molecule is concentrated near
surface bounding the region. The probability that a molec
moves~at least! a distanceL away from its starting point in
time t0,s is

E
L

` 1

~2pt0D !3/2expS 2
r 2

2Dt0
D4pr 2dr

52S 2

p D 1/2

expS 2
y2

2 D yU
L/At0D

`

1E
L/At0D

` S 2

p D 1/2

3expS 2
y2

2 Ddy

<S 2

p D 1/2

expS 2
L2

2t0D D L

At0D
1

At0D

L S 2

p D 1/2

3expS 2
L2

2t0D D . ~2!

For t0,s, we haveL/At0D.1.54 so the first term in the las
line is dominating.

If a molecule reaches a binding siteL in a time t0 less
than s, then its trajectory is ballistic for the timet0 , i.e., it
follows a straight line. The probability that a straight line
a random direction in 3D space hits a binding site of line
dimensionsa at a distanceL is equal toa2/L2. Hence, the
probability p1 that a single molecule hits the binding si
after time t0 is approximately equal to@see Eq.~2! and the
comment following it#

p15
a2

L2

&L

Apt0D
expS 2

L2

2Dt0
D . ~3!

We havep1!1 for t0,s anda!L. We are interested in the
value ofN, the number of molecules, such that at least one
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the molecules reaches the binding site by timet0 with prob-
ability pN'1/2. We must haveNp1'pN . Hence,

N'
pN

p1
5

1

2p1
5

1

2

L2

a2

&L

Apt0D
expS L2

2Dt0
D . ~4!

We conclude that thek-fold increase in the number of mol
eculesN results only in a logarithmic~in k! decrease of the
hitting time t0 . The critical number of moleculesN0 beyond
which the increase ofN is not efficient is obtained from Eq
~4! by substituting the inverse of the probability from E
~1!, with t05s in place of the expression
(&L/Apt0D)exp(L2 /A2Dt0). Because this probability is
1
2 we finally find

N05
L2

a2 . ~5!

From this estimate one can compute the minimal ti
needed to find the target in the volume. It follows from t
work of Smoluchowski and co-workers@3,13# and Eq.~5!
that

t0;
L3

N0aD
5

La

D
.

III. 2D DIFFUSION

It has been conjectured in@4# that the search for a binding
site may be speeded up by a number of possible mechani
mostly dealing with reduction of dimensionality. The diffu
sion process in a 3D-2D reduction of dimensionality mod
involves two steps. First a molecule finds a surface on wh
a target is located and next it finds the target by sliding
the surface@3,6#. In this section we recalculate the quantiti
introduced in the previous section assuming that the m
ecules move on a two-dimensional flat surface.

We now consider a circular region of linear sizeL and a
binding site of linear sizea in the middle of the circle. We
suppose that the molecules perform a reflected Brown
motion on the two-dimensional surface with the diffusio
constantD.

As in the three-dimensional model, after the critical tim
s, the probability distribution for a single molecule within th
circular region is roughly uniform. The hitting time of th
binding site has an approximately exponential distribut
for times greater thans. Increasing the number of molecule
k times results in a decrease of the time needed to reach
binding site by one of them by the same factor ofk.

The probability that a molecule moves~at least! distance
L away from its starting point in timet0 is equal to

E
L

` 1

2pt0D
expS 2

r 2

2Dt0
D2pr dr 5expS 2

L2

2Dt0
D . ~6!

The times is given by the value oft0 for which Eq. ~6! is
equal to1

2, i.e.,
4-2
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expS 2
L2

2DsD5
1

2
. ~7!

Recall that if a molecule reaches a binding siteL in a time
t0 less thans, then its trajectory is ballistic for timet0 , i.e., it
follows a straight line. The probability that a straight line
a random direction in 2D space hits a binding site of line
dimensionsa at a distanceL is equal toa/L. Hence, the
probability p1 that a single molecule hits the binding si
after t0 seconds is approximately equal to

p15
a

L
expS 2

L2

2Dt0
D . ~8!

We havep1!1 for t0,s anda!L. We would like to findN
such that at least one of the molecules reaches the bin
site by time t0 , with probability pN' 1

2 . Such anN must
satisfyNp1'pN . Hence,

N'
pN

p1
5

1

2p1
5

1

2

L

a
expS L2

2Dt0
D . ~9!

Just as in the 3D case, thek-fold increase in the number o
moleculesN results only in a logarithmic~in k! decrease of
the hitting time t0 . The critical number of moleculesN0
beyond which the increase ofN is not efficient is obtained
from Eq. ~13! by substituting the inverse of the probabili
from Eq. ~10!, i.e.,

N05
1

2

L

a
expS L2

2DsD5
L

a
. ~10!

We see that in the 2D model, the optimal number of m
ecules is much lower than in the 3D model. In general fo
given dimensionalityd of the system (d>1),

N05~L/a!d21. ~11!

We will now extract the essence of calculations in Secs
and III ~3D and 2D cases! so that we can apply similar ar
guments in models for which explicit calculations are impo
sible.

First, we find the critical times in which the molecule
distribution in the volume reaches its stationary state.
times t less thans, the molecule may reach the specifi
bounding site in timet by following a ballistic path. Letp2
be the probability that a single molecule following a ballis
path in a random direction will reach the target at the end
the path. Then the critical number of moleculesN0 is equal
to 1/p2 .

The minimal timet0 required to find the target in the 2D
case is obtained@6,14# as in the 3D case,

t0;
L2 ln~ l /a!

N0D
5

La ln~L/a!

D
.
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IV. COMBINED DIFFUSION PROCESSES

A. 1D diffusion with intersegment transfer

We will consider two possible models for a DNA
molecule—‘‘self-avoding random walk’’~SARW! @15# and
‘‘true self-avoding random walk’’ ~TSARW! @16,17#.
SARW can be obtained from the random walk by rejecti
all trajectories that cross it at any point. In contrast to th
model, TSARW can be represented as an ordinary rand
walk whose trajectories pass very close to points visited e
lier by the same path instead of revisiting such points.

First we will examine the TSARW model together wit
the one-dimensional diffusion and intersegment transfer
this model a molecule performs a one-dimensional w
along a DNA chain and when two parts of the chain are cl
to each other, the molecule can jump from one part to
other part of the DNA~intersegment transfer! @7#.

According to this model, the binding site lies on a Gau
ian polymer chain of lengthL1 . In our search model, first the
molecule has to find the polymer chain that will be cons
ered a 3D target with linear sizeb;aAL1 /a5AaL1. Then,
the molecule will slide along the polymer chain to find th
binding site of linear sizea.

The percolation or chemical exponent of the random w
path in 3D, i.e., of a TSARW cluster, is about 0.8@18,19#.
Let s be the time needed for random walk on TSARW clus
to reach the stationary distribution. Fort less thans, if a
molecule goes from a point on the TSARW cluster to a
other point on the cluster whose distance is comparable
the cluster size, the path will have to have a ‘‘ballistic cha
acter,’’ i.e., it will be the shortest path between the tw
points within the cluster. This is supported, for example,
the known estimates of the transition probabilities on frac
sets@20#. They have a form similar to the Gaussian transiti
probabilities in that, the probabilities of very fast transitio
are exponentially small@20#. We conclude that the numbe
of ballistic paths on the TSARW cluster is of orde
(L1 /a)120.8, and so the probabilityp1 that a random ballistic
path hits the target binding site is of order (L1 /a)20.2. This
implies that the critical number of molecules isN0
5(L1 /a)0.2, although this represents only a portion of th
search process on the TSARW cluster, because first of a
molecule has to find the cluster. Therefore, the last estim
has to be combined with the critical number of molecu
needed to find the TSARW cluster in the cell. According
Sec. II, the critical number is (L/b)2, so the modified esti-
mate ofN0 is

N05~L/b!2~L1 /a!0.2. ~12!

A typical size of a TSARW of lengthL1 is b;AaL1 , but
in a typical cell one findsb;L. Therefore the factor (L/b)2

is at most of the order of ten.

B. Combined 3D-1D diffusion

Next we consider the SARW model. In this model, on
the SARW cluster is reached, a molecule is performing a
diffusion along a line of lengthL1 with the diffusion coeffi-
4-3
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cient D1 . After a time t1; l 1
2/D1 , the molecule detache

from the SARW cluster and performs a 3D diffusion until
reaches the SARW cluster again and continues its mo
according to the 1D random walk. The process of int
changing 1D and 3D diffusion continues until the bindi
site is found.

The critical number of molecules is the product of facto
corresponding to 1D and 3D diffusion processes. The
factor is trivially 1, in view of Eq.~11!.

The coiling of DNA molecule on the length scale ofl 1 is
negligible, so we will assume that a piece of this length c
be treated as having a linear shape. Then the 3D sear
equivalent to the 2D search and we obtain, in view of E
~10!,

N05
L

a
. ~13!

V. ESTIMATES AND CONCLUSIONS

Let us estimateN0 for all our models assuming typica
parameter values taken from a biological system. One ha
note that in order to apply our models we need a clear
case in which molecules enter the volume via the bound
surface and are not present in the volume before the sta
the search process. Here we consider the eucaryotic cell
DNA contained in the nucleus and specific proteins in
cytoplasm. The protein must physically move from the cy
plasm into the nucleus of the cell and find its binding site
order to activate a given gene. It may be present inside
cytoplasm in the inactive form and the external signal m
activate it. For example the transcription factor may be
leased from the tight complex with other protein that oth
wise holds it in the cytoplasm preventing it from entering t
nucleus. A typical size of the nucleus isL;5 mm, the size of
the DNA ~one chromosome! is L1;105 mm. A typical dif-
fusion coefficient for a small protein~like GFP! diffusing in
the nucleus isD3;10mm2/s @2#. The size of the target is
roughly a;1023 mm ~three or four base pairs!. A typical
size b occupied by a single chromosome is of the order
0.25L and a typical distancel 1 covered by 1D diffusion
along a DNA chain ~measuredin vitro! @11,13# is l 1
;0.2mm.

Assuming that we locate the target by free diffusion in t
volume @3D diffusion, Eq.~5!#, we find

N0;107. ~14!

If the diffusion takes place on a surface@2D diffusion, Eq.
~10!#, we find

N0;5000 ~15!
S.

r-
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and for this particular caset0;0.004 s. For the combined
1D, diffusion and intersegment transfer@Eq. ~12!# we get

N0;600. ~16!

Finally for the combined 1D-3D search process, we get fr
Eq. ~13!

N0;5000. ~17!

One can also estimate the volume occupied byN0 mol-
ecules in the nucleus. A typical linear size of a protein is
the order of 100 Å. Thus only in the case of Eq.~14! the
volume fraction occupied by the molecules is considerab
i.e., of the order of 20%. In all other casesN0 molecules
occupies a tiny fraction of the volume, i.e., 0.004% or les

The number of specific proteins is usually small, i.e.,
the order of 10 or 100, thus it is at least a few orders
magnitude smaller thanN0 for 3D or 2D diffusion or com-
bined 1D-3D process and few times smaller thanN0 for the
1D diffusion with intersegment transfer. We conclude th
the number of specific proteins used to activate or repress
genes is well below the theoretical estimate of the optim
number for the search process.

Finally we would like to note that as far as the search ti
is concerned the 2D diffusion search process is the m
effective@6#. For a single molecule performing 1D diffusio
with intersegment transfer the best estimate of the sea
time is

t;L1l 1 /D1 ,

where l 1 is the typical distance covered between inters
ment transfers. ForD1;0.1mm2/s @13,21# and l 1;0.2mm
one finds

t;23105 s

whereas we get for the 2D diffusion@6# ~see also Sec. II!,

t;20 s,

i.e., four orders of magnitude decrease in the search tim
comparison to the 1D diffusion with intersegment transf
For the combined 1D-3D diffusion process we would ge
similar estimate of the search time as for the 1D diffusi
with intersegment transfer.
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